CHAPTER 1 ATOMIC STRUCTURE

1 The following diagram shows the first ionisation energies of some Period 3 elements.

a)	Draw a cross on the diagram to show the first ionisation energy of aluminium. (1 mark
b)	Write an equation to show the process that occurs when the first ionisation energy of aluminium is measured.
	(2 marks
c)	State which of the first, second or third ionisations of aluminium would produce an ion with the electron configuration $1s^2\ 2s^2\ 2p^6\ 3s^1$
	(1 mark
d)	Explain why the value of the first ionisation energy of sulfur is less than the value of the first ionisation energy of phosphorus.

(2 marks)

(e)	Identify the element in Period 2 that has the highest first ionisation energy and give electron configuration.			
	El	ement		
	El	ectron configuration(2 marks		
(f)		ate the trend in first ionisation energies in Group 2 from beryllium to barium. cplain your answer in terms of a suitable model of atomic structure.		
	Tre	e nd		
	Ex	planation		
		(3 marks		
2 (a)	One	isotope of sodium has a relative mass of 23.		
	(i)	Define, in terms of the fundamental particles present, the meaning of the term <i>isotopes</i> .		
	(ii)	Explain why isotopes of the same element have the same chemical properties.		
	(iii)	Calculate the mass, in grams, of a single atom of this isotope of sodium. (The Avogadro constant, L , is $6.023 \times 10^{23} \text{ mol}^{-1}$)		
		()		
		(5 marks)		

	(b)	Give the electronic configuration, showing all sub-levels, for a sodium atom.
		(1 mark)
	(c)	An atom has half as many protons as an atom of ²⁸ Si and also has six fewer neutrons than an atom of ²⁸ Si. Give the symbol, including the mass number and the atomic number, of this atom.
		(2 marks)
3	The 7361	values of the first ionisation energies of neon, sodium and magnesium are 2080, 494 and LJ mol ⁻¹ , respectively.
	(a)	Explain the meaning of the term first ionisation energy of an atom.
		(2 marks)
	(b)	
		(2 marks)
	(c)	Explain why the value of the first ionisation energy of magnesium is higher than that of sodium.
		(2 marks)
	(d)	Explain why the value of the first ionisation energy of neon is higher than that of sodium.
		(2 marks)

(a)		elative abundances of these isotopes can be determined using a mass spectrome mass spectrometer, the sample is first vaporised and then ionised.	ter.
	(i)	State what is meant by the term isotopes.	
	(ii)	Explain how, in a mass spectrometer, ions are detected and how their abunda is measured.	nce
		How ions are detected	
		How abundance is measured	
		(5 mar	
(b)	(i)	Define the term relative atomic mass of an element.	
	(ii)	The relative abundances of the isotopes in this sample of iron were found to be follows.	e as
		m/z 54 56 57	
		Relative abundance (%) 5.8 91.6 2.6	
		Use the data above to calculate the relative atomic mass of iron in this same. Give your answer to one decimal place.	ple.
		(4 mar	

4 A sample of iron from a meteorite was found to contain the isotopes ⁵⁴Fe, ⁵⁶Fe and ⁵⁷Fe.

5 The diagram shows the layout of a time of flight mass spectrometer.

(a)	Explain how positive ions are formed from the sample.		
		(1 mark	
(b)	Explain why the instrument is kept under vacuum.		
		(1 mark	
(c)	Explain how the ions are accelerated and separated by mass in the instrument.		
		(3 marks)	
(d)	Explain how an electric current is produced when an ion arrives at the detector	,	
(u)			
		(1 mark	

(e) The low-resolution mass spectrum of magnesium shows three peaks.

Mass/ charge	Relative abundance / %
24	79.0
25	10.0
26	11.0

(i) Give the number of protons and neutrons in the nuclei of each isotope.

Mass/ charge	Number of protons	Number of neutrons
24		
25		
26		

(1 mark)

(ii) Calculate the relative atomic mass of a sample of magnesium. Give your answer to the appropriate number of significant figures.

(2 marks)